A Multi-dimensional Adaptive Sampling Met- Hod for Analysis and Design of Frequency Selective Surface with Arbitrary Element
نویسندگان
چکیده
A fast and efficient multi-dimensional adaptive sampling method (ASM) based on Stoer-Bulirsch (S-B) algorithm for frequency selective surface (FSS) analysis and design is presented in this paper. The multivariate rational function is established according to the functional relation of the scattering parameters with frequency and direction of incident wave, medium parameters and geometry dimensions of FSS structure, et al.. In order to evaluate the values of the multivariate rational function fully automatically without determining the coefficients of the targeted rational interpolant, the one-dimensional S-B algorithm is expanded into multidimensional method. The sampling points in each dimension are chosen at the areas of maximum error in an adaptive way. The recursive interpolation results of one dimension are used as the initial values of next dimension in the recursive tabular until nth-dimensional recursive interpolation is accomplished. The initial values of recursive algorithm are calculated by spectral domain method of moments (MoM) at every sample point. The current distribution of FSS cell is predicted by RaoWilton-Glisson (RWG) subdomain basis functions which are applicable for arbitrarily shape elements. Four examples, including FSS with the eight-legged, cross and ring elements and FSS radome enclosed antennas, are considered to demonstrate the feasibility of applying the multi-dimensional ASM to analysis and optimal design of FSS. Numerical results show that the proposed method is superior in computation efficiency compared to the direct MoM. Good agreement between the proposed technique and the direct MoM is observed. Received 20 April 2012, Accepted 27 May 2012, Scheduled 4 June 2012 * Corresponding author: Xin Ma ([email protected]). 214 Ma, Wan, and Wan
منابع مشابه
Comparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures
In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...
متن کاملVolume-Filling Effects on Sloshing Frequency in Simplified and Explicit Dynamic Finite Element Models of Tank Wagons During Braking and Turning
Numerical analysis of fluid sloshing in tank wagons is amongst essential research ideas that are focused by railway engineers. The free surface of fluid becomes unstable and turns into a dynamic complex non-linear problem for fluid-structure interaction (FSI). In this paper, initially, the dynamic response of the tank, including lateral force analysis and pressure distribution during braking, i...
متن کاملEfficient Multi-Objective Optimization of Frequency Selective Radome with Nonuniform Wall Thickness
An efficient optimization technique for frequency selective surface (FSS) radome with nonuniform wall thickness is proposed to improve the power transmission efficiency and the boresight error (BSE) of FSS radome simultaneously. The high-frequency method based on the approximate locally planar technique is used to evaluate the transmission performance of FSS radome. An efficient multi-dimension...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملDesing And Implementation of Adaptive Active Filters for Exact Estimation And Elimination of AC Network Distortions
In recent years, active filters have been considered and developed for elimation of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory in presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using th...
متن کامل